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An efficient protocol for the preparation of per-O-sulfated organic compounds is reported. Sulfation
of polyols with the Et3N�SO3 complex in DMF in the presence of triflic acid allowed acceleration of the
reaction at lower temperature. The efficiency of the developed protocol is demonstrated by the trans-
formation of a series of organic polyols and phenols related to oligosaccharides, cyclitols, lignans and
flavonoids.

� 2008 Elsevier Ltd. All rights reserved.
The biological importance of poly-O-sulfated compounds neces- oligo-O-sulfated flavonoid glycosides,9 myo-inositol hexasul-

sitates the development of efficient methods for their preparation
from the parent polyols. The most commonly used reagents for the
synthesis of poly-O-sulfated derivatives include the complexes
of sulfur trioxide with tertiary amines or amides, for example,
Et3N�SO3, Py�SO3 and DMF�SO3. These reagents were used in the
syntheses of poly-O-sulfated organic compounds, particularly of
heparin1–3 and fucoidan4–7 fragments, the anticancer drug PI-88,8
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fate10,11 and others.
O-Sulfation of organic compounds containing several OH-

groups may require elongation of reaction times up to several days,
increasing the temperature up to 95 �C and the use of a large
excess of the sulfating complex. Thus, per-O-sulfation of carbo-
hydrates with the complexes Et3N�SO3 or Py�SO3 is usually carried
out at 50–65 �C,2,3,7,8 while DMF�SO3 appears to be more reactive
OR

ORRO

OR

RO OR

5     R = H
5a   R = SO3Na

OR

OR

OR

OMe

3     R = H
3a   R = SO3Na

O

OOR

RO OR

OR

OR

4     R = H
4a   R = SO3Na

1

10

9

8
7

6

5
4 3

2 1'

6'

5'
4'

3'

2'1

9

8
7

6

5

4
3

2

1'
9'

8'

7'

6'
'

'

1

4
3

2

3'

2'

5 and their products of O-sulfation.

mailto:nen@ioc.ac.ru
http://www.sciencedirect.com/science/journal/00404039
http://www.elsevier.com/locate/tetlet


a

b

c

d

5.4 5.3 5.2 5.1 5.0 4.9

ppm

H-4, H-4’
H-4’’, H-3’’’

H-4’’’

H-1

H-1’
H-1’’
H-1’’’

a

b

c

d

5.4 5.3 5.2 5.1 5.0 4.9

Figure 2. Anomeric regions in the 1H NMR spectra of the products of O-sulfation of
tetrasaccharide 1 by Et3N�SO3 (5 equiv/OH-group) in DMF in the absence (a) and in
the presence of 0.3 (b), 1.0 (c) and 1.6 equiv (d, entry 6 in Table 1) of TfOH per OH-
group.
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and multiple sulfation with this reagent is performed at tempera-
tures as low as�5 �C in good yield.12 Also a rapid microwave-based
protocol was developed for the synthesis of per-O-sulfated organic
molecules.13

Herewith we report an improved protocol for the preparation of
per-O-sulfated derivatives of polyhydroxy organic compounds,
which was developed for the synthesis of highly sulfated frag-
ments and analogues of natural polysaccharide fucoidans. These
polysaccharides exhibit an interesting spectrum of important bio-
logical activities including anticoagulant, antiangiogenic and anti-
microbial as well as the ability to inhibit selectin mediated
inflammation.14,15

Our study towards the preparation of per-O-sulfated polyols
was started with attempts to synthesize nonasulfate 1b from tetra-
saccharide 1 ( Fig. 1).6 Its selectively tetrasulfated derivative 1a
was recently obtained by us6 via sulfation of the appropriate selec-
tively substituted tetraol precursor with Py�SO3 (5 equiv per OH-
group) within 1 h in DMF at 20 �C. This protocol appeared to be
inefficient for per-O-sulfation of tetrasaccharide 1 affording a
mixture of partially O-sulfated products and only traces of target
compound 1b (Table 1, entry 1).

Treatment of 1 with Py�SO3 in pyridine at elevated temperature,
as was applied7 for the per-O-sulfation of the b-octyl glycoside ana-
logue of tetrasaccharide 1, also produced a mixture of partially sul-
fated derivatives (entry 2). This result was probably connected with
the low solubility of sulfated products and their precipitation from
the reaction mixture. Application of DMF-Py (3:1 v/v) as a solvent
system, which increases the solubility and prevents precipitation,
resulted in the formation of a mixture of products with an increased
degree of sulfation, but again no target completely sulfated
compound 1b was obtained (entry 3). Attempts at per-O-
sulfation of 1 with Py�SO3 in DMF were also unsuccessful (entry
4). In this case, the reaction was accompanied by cleavage of the gly-
coside bonds and gave a very complex mixture of products. Applica-
tion of the complex Et3N�SO3 under the same conditions was free of
degradation but not efficient enough to give persulfate 1b (entry 5).

Surprisingly, we found that the addition of triflic acid (TfOH) to
the reaction mixture significantly promoted O-sulfation with
Et3N�SO3 and allowed the reaction to be run at 0 �C in a shorter
time. This was demonstrated by NMR analysis of reaction mixtures
obtained after sulfation of 1 using the Et3N�SO3 complex in DMF in
the presence of different amounts of TfOH (Fig. 2) which varied
from 0.3 to 1.6 equiv of TfOH per OH-group. The use of 1.6 equiv16

of TfOH resulted in the clear formation of per-O-sulfated product
1b (entry 6).
Table 1
Per-O-sulfation of polyol substrates

(OH)n
1) Sulfating reage
(5 equiv/OH-grou

2) NaOH or Amberlit

Entry Polyol Amount of TfOH,
equiv/OH-group

Temperature
(�C)

Reaction
time

1 1 0 20 1 h
2 1 0 55 72 h
3 1 0 55 72 h

4 1 0 55 72 h

5 1 0 55 72 h
6 1 1.6 0 24 h
7 2 0 0 40 min
8 2 0 20 24 h
9 2 1.0 0 90 min

10 3 1.0 0 90 min
11 4 1.0 0 24 h
12 5 1.6 0 24 h
We connect the effect of TfOH with its ability to liberate free
SO3 from the amine complex in situ, which is the most reactive
sulfation agent. The TfOH promoted O-sulfation protocol was
shown to be efficient for the sulfation of polyol substrates of other
types. Thus, sulfation of the lignan secoisolariciresinol 217 with the
SO3�NEt3 complex in DMF at 0 �C in the absence of acid gave, in
40 min, selectively disulfated derivative 2a (entry 7). Its exhaustive
sulfation required both increasing the temperature up to 20 �C and
elongation of the reaction time (24 h, entry 8), while per-O-sulfa-
tion in the presence of TfOH (1.0 equiv per OH-group, entry
(OSO3Na)n
nt 
p)

e (Na+)

Sulfation agent Reaction products Yield (%)14

Py�SO3, DMF Mixture of partially sulfated products —
Py�SO3, Py Mixture of partially sulfated products —
Py�SO3, DMF/Py (3:1
v/v)

Mixture of partially sulfated products —

Py�SO3, DMF Mixture of partially sulfated and
degradation products

—

Et3N�SO3, DMF Mixture of partially sulfated products —
Et3N�SO3, DMF 1b 77
Et3N�SO3, DMF 2a 57
Et3N�SO3, DMF 2b 81
Et3N�SO3, DMF 2b 75
Et3N�SO3, DMF 3a 53
Et3N�SO3, DMF 4a 60
Et3N�SO3, DMF 5a 61
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9) was complete within 90 min at 0 �C. This protocol was also
efficient for per-O-sulfation of isolariciresinol17 3 (entry 10), the
flavonoid dihydroquercetin17 4 (entry 11) and cyclitol myo-inositol
5 (entry 12), and gave the corresponding per-O-sulfated products
3a-5a in practical yields. The necessary amounts of TfOH to convert
phenols 3 and 4 were determined by us within preliminary exper-
iments. It should be noted that O-sulfation of flavonoid derivatives
using the SO3�NEt3 complex in dimethylacetamide at 65 �C was
shown9 to be inapplicable for exhaustive O-sulfation of all phenolic
OH-groups. Compound 5a was prepared previously by sulfation of
myo-inositol with chlorosulfonic acid or oleum under heating
(Fig. 1).10,11

In conclusion, an improved protocol for the synthesis of persulf-
ated derivatives of polyols containing multiple alcoholic and
phenolic OH-groups has been reported. The applicability of this
method was demonstrated by the preparation of per-O-sulfated
derivatives of polyols of interest for pharmacology investigations
as well as examples related to lignans, flavonoids, cyclitols, and
oligosaccharides.
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